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Abstract. Powdered solids often present very specific properties due to their granular nature. Such powders
are often obtained by mixing two ingredients in variable proportions: conductor and insulator, or conductor
and super-conductor. In a very natural way, these systems are modeled by regular lattices, whose sites or
bonds are randomly chosen with given probabilities. It is known that the electrical and optical properties
of random bi-dimensional (2D) networks are well described by their conductance’s poles (resonances) and
residues (amplitudes). The numerical implementation of a spectral method gave the spectral density, the
AC conductivity, the multi-fractal properties of the moments for the local electric field (or currents), and
spectrum of resonances characteristic of some small clusters (animals). This work extends the spectral
method to the three-dimensional (3D) case where the problem is more complicated because the duality
property and the corresponding symmetries are broken. As in the 2D-case, the two significant parameters
are the ratio h = σ1/σ0 of the complex conductances σ0 and σ1 of both phases, and the probability p
(resp. 1− p) of σ0 (resp. σ1). All the resonances lie on the negative real h-axis, i.e. for pure non resistive
networks in the AC case. For a static (DC) system, only the value h = 0 (corresponding to a binary system
with σ0 finite and σ1 = 0, or σ0 =∞ and σ1 finite) can give a resonance. Some applications are proposed,
in particular the ability for small clusters (animals with one, two or three bonds) to present a singular
response for well identified frequencies of the incident electromagnetic field.

PACS. 66.10.Ed Ionic conduction – 66.30.Dn Theory of diffusion and ionic conduction in solids –
61.43.Gt Powders, porous materials

1 Introduction

The three-dimensional materials constituted by binary
powders are intensively used in modern electrical or opti-
cal devices where the large interfaces between the grains
of the composite play a fundamental role. The interfaces
are often the geometrical zones of interest and their per-
colation through a sample are primordial for the phys-
ical properties of a system. These heterogeneous media
can be dispersed as a thin layer upon a substrate (super-
conducting layer, applications to furtivity, active skins as
antenna) or they can occupy a three-dimensional (3D)
volume. As related physical effects we could quote, for
instance, the increase of conductivity of granular ionic
conductors in which an insulating powder is dispersed
between the grains [1], the behavior of wet brushite com-
posites [2], and enhanced Raman scattering [3].

Percolation models are well adapted: the disordered
systems, where an electromagnetic wave propagates are
often modeled by random networks where each bond
represents a grain or a grain boundary.
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Here we only consider simple square (2D) or cubic (3D)
lattices, but the method is straightforwardly applicable to
any simply connected network, regardless of its dimen-
sionality.

The notations of this paper are those of [4,5] and we
recall them shortly. The bond occupation is obtained ac-
cording to the following binary law: conductance σ0 and
concentration p for one kind of bond, σ1 and 1−p respec-
tively for the other kind. The dimensionless complex ratio
h = σ1/σ0 of the two conductances is de facto the essen-
tial parameter along with the concentration p. We will use
the equivalent complex variable

λ =
1

1− h =
σ0

σ0 − σ1
· (1)

In the static (DC) case, the limit h = 0 (λ = 1) cor-
responds to the two possibilities: the two species are re-
spectively conductor and insulator (σ1 = 0), or conductor
and super conductor (σ0 =∞). We are confronted with a
classical percolation problem.

In the 2D case, the square lattice is self-dual, and quan-
tities such as the percolation threshold can be easily de-
duced from this property. But the system is somewhat



562 The European Physical Journal B

Table 1. The resonance position and the corresponding
residues are presented for some configurations (animals) con-
sisting of one or two bonds: only one animal is put in different
positions in a cubic lattice 8×8×8. With the boundary condi-
tions, only the current direction is relevant. The name in points
out a bond alone between the rows n and n+ 1 (n = 0 is the
top electrode at potential V0). In represents two bonds in the
same direction, between the rows n and n+ 2.

animal pole position residue 10−2 unit

i0, i7 0.789308423 4.17081055

i1, i6 0.674277363 7.54795650

i2, i5 0.668037619 7.76440136

i3, i4 0.667363895 7.78801367

I0, I6 0.570490690 0.77324464

0.893095096 3.61773483

I1, I5 0.544761964 0.00397830

0.797553018 7.93113971

I2, I4 0.543267933 0.00004814

0.792133581 8.20040186

I3 0.543157473 0

0.791570318 8.22848890

pathological: the threshold pc coincides with a symme-
try point p = 0.5 where the two species of the binary
compound are equally represented.

In 3D, the self-duality property is lost, and even the
notion of duality is not easy to define because the dual of
a bond lattice is not a bond lattice. Nevertheless, indepen-
dently of self-duality, a symmetry around p = 1/2 value
always holds for binary systems, regardless of the geome-
try of the network. Namely, swapping the two impedances
and changing p in 1 − p always leaves a binary system
unchanged.

For a cubic lattice the percolation threshold for σ0 links
is given by pc = 0.2488126 [6]. The percolation thresholds
are obtained for the two species (σ0 and σ1) at respectively
pc and 1 − pc. At the symmetry point (p = 1/2), σ0 and
σ1 sub-lattices both percolate and the system is far from
transition points.

In the vicinity of the critical points, i.e. for |h| � 1
and |p− pc| � 1, the sample conductivity obeys a scaling
law. It is well-known that the conductivity is given by the
second order moment of the intensity

∑
(x,y) I

2
xy where

Ixy is the current flowing from the node x to the node
y. We will verify that, as in the 2-D case [7], the differ-
ent moments of the intensity obey a multi-fractal scaling
law. The impedance of the random networks can also be
evaluated for frequency dependent systems with complex
conductivities affected to the bonds of the regular lattice.

We have to solve the Kirchhoff equation at the different
nodes x of the network:∑

y(x)

σx,y(Vx − Vy) =
∑
y(x)

Ix,y = Ix (2)

Table 2. See table 1: similar results for an animal Γn made of
two perpendicular bonds with the vertex on the row n+ 1.

animal pole position residue 10−2 unit

Γ0 0.566366254 4.05530700

0.903637749 1.10140027

Γ1 0.534390544 6.66404562

0.808411116 1.89039118

Γ2 0.531898275 6.86342706

0.803701317 1.91149019

Γ3 0.531617073 6.88538519

0.803195822 1.91366884

Γ4 0.531730016 6.88512684

0.803195852 1.91287160

Γ5 0.532860589 6.86124029

0.803701327 1.90472208

Γ6 0.546552694 6.64049976

0.808420249 1.80603241

where Vx correspond to the potential on the node x
and Ix,y is the current from x to y along the link of
conductance σx,y.

If a current I flows through the sample between two
planar electrodes, one at a potential V0 and the other
one grounded, the conductance of the network reads Y =
I/V0. For a finite system, the conductance of the network
takes the form Y = N(λ)/D(λ) where N and D are poly-
nomials whose degrees are roughly equal to the number
of bonds of the network. The poles and the zeros of the
conductance alternate on the negative real axis of the com-
plex parameter h, or equivalently in the interval [0, 1] of
the real axis in the λ plane [8]. The poles for the con-
ductance, named resonances, are obtained for frequencies
corresponding to λ = λa values. They can be physically
interpreted as a vanishing V0 for non-vanishing I.

For a given network, a very complicated spectrum of
resonances, characteristic of the geometry of the sample, is
obtained by solving numerically a generalized eigenvalue
problem equivalent to the Kirchhoff equations. This ap-
proach, first proposed by Straley [9], allows the calculation
of the conductivities, corresponding to different values of
h. The determination of the poles of the conductance and
the corresponding residue is required. One must average a
large number of samples in order to obtain information in-
trinsic to the composition p. One can also consider a small
given cluster (“animal”), of say some connected conduct-
ing bonds, in a sea of insulating bonds [5]. It is easy to
obtain the resonant set for this animal (see Tab. 1). Its
contribution can then be identified in the overall spec-
trum of a macroscopic binary heterogeneous system. In
applications, a pattern could be chosen in order to obtain
a selective absorption or reflectivity for a given frequency
bandwidth with applications for instance in the construc-
tion of planar antennas.

The paper is organized as follows. In Section 2, we
present our notations and the numerical algorithm. In
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Section 3, the results are presented and discussed. We
conclude the paper by proposing some applications of 3D
binary random networks.

2 Model and methodology

We model the electrical properties of a compressed powder
by considering that the grains are on the vertices of a
lattice, in contact along the links. For example, we put
a capacity to represent a bad conducting contact between
two grains, and a resistance (possibly inductive) for a good
contact. The sample is thus seen as a random impedance
network.

We restrict ourselves to a binary network, using only
two values for the impedance of a link. With more possible
values the problem is undoubtly interesting but unfit for
the spectral method we use here.

As the set of sites, we consider a finite piece L of the
cubic lattice, namely

L = {1 . . .Nx} × {1 . . .Ny} × {1 . . . (Nz − 1)} .

We take the planes z = 0, and z = Nz as electrodes (any
pair of sites in each of these two planes are connected by an
infinitely conducting link). Finally, between two nearest
neighbors, we put a link of impedance σ0 (type P link)
with probability p, and a link of impedance σ1 (type Q
link) with probability q = 1 − p. We consider periodic
boundary conditions in the (x, y) plane, in order to try to
reduce the finite-size effects in the numerical computation.

We are, of course, not interested in a particular real-
ization of the network. We will always average the studied
quantities over a sufficient number of realizations of the
disorder. By this averaging procedure, we expect to obtain
more information on a real (almost infinite) system. It is
known, for such a model, that p ( the density of type P
links ) and h = σ1

σ0
are the relevant macroscopic param-

eters for the determination of the averaged quantities we
are interested in.

For obvious symmetry considerations, the exchange of
p and q corresponds to replacing h by 1

h . Instead of h
itself, it is more practical to use λ = 1

1−h . Then the above
transformation corresponds to a change of λ in 1−λ. This
symmetry allows us to restrict the range of investigation
of such models to p ≤ 1

2 . Moreover, one can immediately
conclude that any averaged quantity computed for p = 1

2

will be symmetrical around the value λ = 1
2 . For instance,

one can compute the average conductance of the network

Y (p, σ0, σ1) = σ0Ỹ (p, λ) = σ1Ỹ (1− p, 1− λ). (3)

For each given realization, the conductance of the net-
work, Y0(λ), is a rational fraction with isolated singular-
ities in the interval [0, 1]. It has only simple poles with
non-negative residues, and can be thus written in the
Bergman-Milton integral representation [8]:

Y0(λ) =
∑
a∈A

γa
λ− λa

· (4)

It is conjectured that for an infinite-size network,
the whole interval becomes a singular line for the
conductance (we make the same conjecture for the
conductance averaged on an infinite number of realiza-
tions). If one assumes this result, the conductance is
completely determined by the density of singularities in
the complex plane. See [10] and references therein for
more details on this spectral representation. Namely, the
averaged conductance of a finite-size network is written as

Ỹ (p, λ)
Ỹ (p,∞)

=
∫ 1

0

dx
n(p, x)
λ− x + 1, (5)

where σ0Ỹ (p,∞) is the conductance of the uniform
network (σ0 = σ1),

Ỹ (p,∞) =
NxNy
Nz

· (6)

To get a numerical approximation for the spectral density
n(p, x), we construct an histogram in the following way.
We cut the [0, 1] interval in small intervals Ik, and we
compute the integrals of n(p, x) on each Ik. For a given
realization, a pole λa of Ỹ which falls in Ik contributes
to the integral with a weight given by the corresponding
residue γa. By this procedure, one gets a staircase function
which approximates the spectral density.

The numerical problem is thus reduced to the compu-
tation of the positions and amplitude of the resonances.
We show in Appendix A how they are related to the gen-
eralized eigenvalues and eigenvectors of a Laplacian-like
matrix. The computation can be done using a classical
numerical method. One can then obtain the resistance
of the network for any ratio h of local conductances, or
equivalently, for any frequency, if a frequency-dependent
ratio is under study. It is thus easy to draw a Cole-Cole
diagram for the network which can be fitted with experi-
mental measurements on a real sample.

The numerical results have been compared, for pos-
itive (real) values of h, with those obtained by a direct
resolution of the Kirchhoff equations. The agreement was
excellent. The method also allows a self-checking. It can
be verified, for each configuration, that the incoming cur-
rent is equal to the outgoing current. The difference gives
an order of magnitude for the numerical precision.

3 Results and discussion

We present some results obtained, as a function of λ, for a
given value of the composition. The calculations are done
at the threshold p = pc. The four graphs of Figure 1 are:
the pole density, the spectral density as defined in Sec-
tion 2, the sum

Σa = λan(p, λa)

representing an average position of resonances, and the
weight of each resonance. The graphs contain several cur-
ves, corresponding to different sizes of the samples. Results
are averaged on a number of realizations such that the
total number of considered random links is about 5× 106.
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Fig. 1. Example of graphs for p = pc and linear sizes of 8 and 10.

We observe in Figure 1 a very poor convergence of the
resonance weight when the linear size of the network varies
from eight to ten, especially for the small values of λ. The
statistics is very inaccurate because there are too few poles
in this region. But the disagreement is not really bothering
because the quantity of interest for the calculation of the
conductivity is the spectral density, i.e. the product of
the resonance weight with the pole density (which is a
very small quantity in this region).

Figure 1 also shows that the spectral density has
reached a good convergence for a very small 3D sample
size. Here we obtain nearly the same results for the two
linear sizes: Nx = Ny = Nz = 8 and 10.

For very “dilute” samples (p� 1), one can easily iden-
tify the contributions from elementary animals such as
isolated links or pairs of links. The resonances and their
weights (residues) corresponding to several animals are
presented in Table 1. If a given animal is predominant in
a given network, it is easy to predict the conductivity ra-
tio h, and then the frequency, which leads to the optimal
conductivity. Some interesting practical properties could
originate from this remark. Most peaks in the pole den-
sity are centered on characteristic values for well-known
animals. The number of patterns generated in a random
sample increases quickly with the density and it is thus
more and more difficult to assign the observed structure
to given animals.

The resonance positions given in Table 1 can be com-
pared with the values obtained for the same animal in a
infinite network by the method described in [4] for a 2D
case. Following this method, one obtains the positions of
resonances for a given animal as the eigenvalues of a ma-

trix obtained from the values of the Green function of the
laplacian operator on the infinite lattice. This method can
be easily extended to the 3D systems, with the restriction
that one cannot compute analytically the values of the
entries of this matrix except for some cases such as the
isolated link.
i) An isolated link: One has to compute the eigenvalues of

M =
1
6

(
1 −1
−1 1

)
,

the obtained value (λ = 1
3 ) correspond to a type Q

link in an infinite lattice of type P links. The values
given in Table 1, correspond to animals of type P links.
One has to compute 1− λ = 2

3 to make a comparison.
Agreement is thus obtained with the value for i3 in
Table 1 up to the third digit.

ii) A pair of adjacent links: For a pair of adjacent links,
the matrix to be considered is

M =
1
6

 1 −(2 + 6g) 6g + 1
−1 2 −1

6g + 1 −(2 + 6g) 1

 ,

the value of g is computed numerically. It depends on
the relative orientation of the two links. One obtains
λ1 = −g and λ2 = g + 2

3 as eigenvalues of M leading
to resonances at 1+g and 1

3−g. For two links with the
same orientation, g ≈ −0.2098, the two resonances are
respectively 0.7902 and 0.5431 in accordance with the
computed values for I3 up to 2 digits. For two orthog-
onal links, g ≈ −1+0.2098

4 ≈ −0.1976. The resonances
are around 0.5301 and 0.8025 again in accordance with
the values for Γ3 in Table 1 up to 2 digits.
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Fig. 2. Pole density and average resonance position at p = 0.5, for a linear size of 8 (solid line), and EMA curve (dotted line).
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Fig. 3. Pole density and average resonance position for linear sizes of 5 and 10 at p = 0.01 (very dilute sample).

The averaged resonance position presents a noticeable pro-
perty: in the effective medium approximation (EMA) [11]
its representation versus λ is a semi-circle. The EMA
model is a coarse but very useful approximation. It is
still widely used [7,12]. It gives a good qualitative idea
of the behavior exhibited by a system and works better
when the fluctuations can be neglected. The comparison
of the averaged resonance histogram gives a good idea of
the ability for the EMA to work as a good approximation.
Figure 2 shows that this result is reached in the 3D case
for p = 0.5 and corresponds to a smooth contribution of
the eigenvalues: all the animals are represented with com-
parable weight. The averaged resonance is invariant with
the simultaneous interchange p↔ q = 1−p and λ↔ 1−λ.

We do not have self-duality in the 3D case as in the
2D case. For this reason the various functions represented
in Figure 1 are not symmetrical with respect to λ = 0.5
as they were for a 2D model. It is surprising that the
2D model gives the same good agreement between the
EMA and the simulation results for p = 0.5, because this
value corresponds also, by accident, to the bond percola-
tion threshold where the fluctuations diverge. So the va-
lidity of the EMA model seems in that case related to the
symmetry of the network instead of the density value at
the percolation threshold. In Figure 3, the pole density
and average resonance position are represented versus λ,

illustrating a typical finite-size effect coming from the con-
tribution of a single link attached to an electrode. The cor-
responding peak is observed for λ ' 0.8 in Figure 3. The
pole density and average resonance position scale as the
inverse of the linear size of the sample, which corresponds
to the ratio surface over volume for a cubic sample. This
is the expected result of the linear decreasing contribu-
tion of the surface effects when the sample size increases.
Conversely, on the same curves, the peak in the vicinity of
λ ' 0.65 corresponds to isolated bonds in the bulk which
is independent of the size of the sample.

The spectral method also provides a direct determina-
tion of the distribution of the local electric field Ex,y =
Vx − Vy. More precisely, we evaluate for cubic samples
of size N × N × N the mean values of the k-moments
Σ(x,y)|Ex,y|k. The results are normalized with a multi-
plicative constant C such that C = Σ(x,y)E

2
x,y and we

look at the quantity Sk(N) defined as:

1
C
〈Σ(x,y)|Ex,y|k〉,

where k is an integer varying from one to six. We can
extend the definition to k = 0 by summing over all bonds
(x, y) such that Ex,y 6= 0.

For instance, in a simple static superconductor-
conductor system (σ0 7→ ∞ and σ1 finite), the electric field
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Fig. 4. Log-log plot of the moments Sk(N) with k = 1 to
6, versus the sizes N of the samples. The slopes are: −0.0832
for k = 1 (◦), 0 (definition) for k = 2 (∗), 0.2981 for k = 3
(�), 0.8724 for k = 4 (4), 1.7400 for k = 5 (/), 2.8463 for
k = 6 (5).

does not vanishes only on the conducting bonds, where
the electric field is proportional to the current. The mo-
ment for k = 0, in this limit approach the mean density of
conducting bonds in the sample. S2 converges to the con-
ductivity of the conducting path and, for increasing values
of k, the high currents are privileged. S6 gives a good idea
of the average density of red bonds in the conducting path
because by definition the maximal (finite) current flows
through the red bonds.

For the general AC problem, the variation of the k
moments versus the sample size is close to a power law
with the exponents xk [7]. In the caption of Figure 4, we
give the xk’s. They do not obey a linear relation xk 6=
x0 + αk. This property indicates that the distribution of
the local electric fields has a multi-fractal nature.

One can associate to the xk a quantity dk related in
some sense to fractal dimensions of the set of links with a
significant potential value. We define dk = 3− xk 2

k−2 for
k 6= 2. We can expect a linear behavior dk ≡ 3−βk where
β is roughly 0.25 for the cubic lattice [13]. One can observe,
on the graph of Figure 5, this linear behavior of dk as a
function of k, with β = 0.253± 5× 10−3, compatible with
the expected value. There exists nevertheless a noticeable
discrepancy between the k = 0 value (d0 = 3) and the
observed one d̃0 = 3.12± 2× 10−3.

4 Conclusion

As noted in [7,4], the spectral method is particularly inter-
esting for repetitive calculations with numerous conduc-
tance ratios: when the spectral density corresponding to a
given sample is memorized, it can be used to calculate the
conductance for every value of h (or λ). Therefore, for the
investigation of frequency-dependent quantities, this algo-
rithm is more suitable than the classical ones, as sparse
matrix method [14], transfer matrix method [15] or the
star-triangle transformation [16].

0 2 4 6
1.5

2

2.5

3

Fig. 5. Dimensions dk associated to the scaling exponents xk
versus k (+), linear fitting with slope 0.253 ± 5 × 10−3 and
intercept 3.12±2×10−3 (solid line) and expected values (dotted
line).
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Fig. 6. Frequency variation of the impedance (real part versus
imaginary part) of a 8× 8× 8 cubic array of capacitors bonds,
doped with several concentrations p of resistors bonds.

As an illustration, and in order to allow a simpler com-
parison with experiments, we give here the Cole-Cole dia-
gram obtained for a cubic lattice of resistors (σ0 = R−1),
doped with a density p of capacitors (σ1 = jCω). The
results are presented for R = 1, C = 1 and are averaged
on a collection of 8× 8× 8 samples, for densities varying
from p = 0.01 to p = 0.5.

Figure 6 shows that for a very small amount of ca-
pacitors (p = 0.01), the Cole-Cole diagram is a perfect
semi-circle centered on the value R corresponding to the
DC resistivity of the sample. When p is increased, but not
sufficiently to allow any percolating paths of capacitors,
the semi-circle is slightly distorted at high frequency (i.e.
in the vicinity of the real axis close to the origin). We
also see that for higher p’s, another semi-circle ending on
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the origin appears. This is characteristic of a percolating
capacitors path, and should not be visible for p’s less than
the percolation threshold. This is thus the signature of a
finite size effect, roughly speaking, for a p between 0.17
and 0.25, where the Cole-Cole diagram is the superposi-
tion of two semi-circles corresponding to percolating and
non percolating samples. The ratio of the radius of the
two semi-circles is related to the percolation probability
for a finite size sample.

In this paper, the work presented in [7] is straightfor-
wardly extended to the 3D case in order to give a more
relevant description of binary composite materials. Indeed,
in practical realizations, the thickness of a painting layer
can be much larger than the wavelength of an incident
electromagnetic wave.

Progress in furtivity, active skins, giant Raman scat-
tering could be the spin-offs of a good understanding of
the behavior of composite materials in an electromagnetic
field. For instance, the knowledge of the resonances asso-
ciated to a given pattern allows to construct a skin which
absorbs an incident electromagnetic wave of well-defined
wavelengths. By combining several animals, one could ob-
tain an arbitrary set of resonances, leading to an arbitrary
frequency response of the painted object.

It is a real pleasure to thank J.P. Clerc and J.M. Luck for
very enlightening discussions, P. Knauth and A.M. Tremblay
for their very careful reading of the manuscript.

Appendix A: Total conductance computation

To compute the potential on the sample, one has to solve
the Kirchhoff equations,∑

y

σxy (Vx−Vy)+σux(Vx−V u)+σdx(Vx−V d) = 0 ∀x.

(A.1)

Where σxy denotes the conductance between two sites x
and y, and σu

x, the conductance from the site x to the
upper electrode at potential V u (d refers to the bottom
electrode). We always assume that the bottom electrode’s
potential is fixed by V d = 0. We define P (x) as the set
of sites linked to x by a σ0 conductance and Q(x) those
linked by a σ1. We set χu

x = 1 if x is linked to the upper
electrode, and 0 elsewhere. Similarly, we define Bu

x = 1
if there is a link of conductance σ1 from x to the upper
electrode. Note that σu

x = σ0(χu
x − 1

λB
u
x). Equation (A.1)

becomes

σ0

∑
y∈P (x)

(Vx − Vy) + σ1

∑
y∈Q(x)

(Vx − Vy)

+ σu
x(Vx − V u) + σd

x(Vx − V d) = 0. (A.2)

This suggest a Laplacian operator formulation involving
only the λ parameter. In this setting, equation (A.1) is
cast into

(−∆QV )x − λ(−∆V )x = (Bu
x − λχu

x)V u , ∀x ∈ L .
(A.3)

Where the Laplacian ∆, is defined by ∆xy = 1 if there is a
link between x and y, −∆xx is the number of links starting
from the site x, including links from x to an electrode (note
the − sign). The matrix ∆Q is defined in the same way,
but one considers only the type Q links (σ1 conductance).

The problem can now be solved by considering the
generalized eigenvalue equation for the operators (−∆Q)
and (−∆). Namely, one has to find all possible general-
ized eigenvalues λa and an associated orthogonal basis of
generalized eigenvectors V (λa) such that

(−∆Q)V (λa) = λa(−∆)V (λa), a ∈ A ,

〈V (λa)†|(−∆)V (λb)〉 = δba, a, b ∈ A.
(A.4)

Where, † denotes the hermitic conjugation, 〈V †|W 〉 =∑
x∈L

V †xWx is the usual scalar product, δ is the Kroenecker

symbol and A is a set of indices (e.g. integers between
1 and nr, the number of eigenvalues counted with mul-
tiplicities). Note that this generalized eigenvalue problem
is always solvable because (−∆) is a (positive) definite
operator thus invertible. Moreover, (−∆Q) and (−∆) are
self-adjoint operators, thus, all the λa’s and all compo-
nents of the V (λa)’s are real numbers. One can even show
that all the λa’s fall in the [0, 1] interval, using the fact
that (−∆Q) and (−∆P ) = (−∆)−(−∆Q) are also positive
operators.

The Kirchhoff equations can now be solved by expand-
ing the solution V (λ) for a given λ on the orthonormal
basis of eigenvectors of (−∆Q). Indeed, one sets

V (λ) =
∑
b∈A

cb(λ)V (λb), (A.5)

then substitutes this expression in equation (A.3)

V u(Bu − λχu) =∑
b∈A

cb(λ) ((−∆Q)V (λb)− λ(−∆)V (λb)) , (A.6)

then by (A.4) one can obtain the coefficient ca(λ) for a
given a by taking the scalar product with V (λa)†. Indeed

V u〈V (λa)†|Bu − λχu〉 = V u
[
(λa − λ)〈V (λa)†|χu〉

+ 〈V (λa)†|Bu − λaχu〉
]

= (λa − λ)ca(λ). (A.7)

We define A0 the set of indices a such that λa = 0. It will
be proven in the next section that

〈V (λa)†|Bu〉 = 〈V (λa)†|Bd〉 = 0, ∀a ∈ A0. (A.8)

This property of eigenvectors in the kernel of ∆Q allows
one to exclude all the terms 〈V (λa)†|Bd〉 for a ∈ A0 in
the sum. Moreover, the exchange of σ0 and σ1 is equiva-
lent to the exchange of the P set and the Q set. This im-
plies that the system is invariant under the transformation
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λ 7→ (1 − λ) and ∆Q 7→ ∆P = (∆ − ∆Q). Thus, if one
defines A1 the set of indices a such that λa = 1, all terms
〈V (λa)†|Bd − λaχd〉 vanish for a in A1. This suggest the
use of the set Ã of all indices which are neither in A1 nor
in A0.

Finally one gets for the potential on the lattice

V (λ) = V u(−∆)−1χu

+ V u
∑
a∈Ã

〈V (λa)†|Bu − λaχu〉
λa − λ

V (λa), (A.9)

using the identity, holding for any vector W ,∑
a∈A
〈V (λa)†|W 〉V (λa) = (−∆)−1W . (A.10)

Note that for the uniform lattice (p = 1), the potential
is given by V u(−∆)−1χu. Thus equation (A.9) gives the
solution of the Kirchhoff equations as a deviation from the
potential on the pure P -type lattice.

One can now compute the intensity flowing through
the sample (and thus its conductance) by summing all
the contributions on the links between the lower electrode
and the lattice.

I = Y V u =
∑
x∈L

σd
x (Vx) . (A.11)

Here one has to substitute σd by its expression in term
of λ,

σd
x = σ0χ

d
x − (σ0 − σ1)Bd

x =
σ0

λ

(
λχd

x −Bd
x

)
. (A.12)

This leads to the following form for the conductance

Y (λ)
σ0

=

〈(
χd − Bd

λ

)† ∣∣∣∣V (λ)
V u

〉
· (A.13)

Then one defines the reduced conductance of the sample
Ỹ = NzY

NxNyσ0
which reads

Ỹ (λ) =
Nz

NxNy

〈(
χd − Bd

λ

)†∣∣∣∣∣ (−∆)−1χu

+
∑
a∈Ã

〈V (λa)†|Bu − λaχu〉
λa − λ

V (λa)

〉
· (A.14)

This last expression can be simplified by use of the prop-
erties of (−∆)−1χu. Recall that it is constant and equal to
z
Nz on the plane at altitude z (parallel to the electrode).
One has 〈(

χd
)† ∣∣(−∆)−1χu

〉
=
NxNy
Nz

· (A.15)

After further simplification, the conductance reduces to

Ỹ (λ) =

1− Nz
NxNy

[
1
λ

∑
a∈A−A0

〈(Bd)†|V (λa)〉〈V (λa)†|Bu〉
λa

−
∑
a∈Ã

〈
(
Bd − λaχd

)† |V (λa)〉〈V (λa)†|Bu − λaχu〉
λa(λa − λ)

]
·

(A.16)

Consequently, because

0 =
∑
x∈L

((−∆Q)− λa(−∆))V (λa)

= 〈
(
Bd−λaχd

)† |V (λa)〉+〈(Bu−λaχu)† |V (λa)〉.

(A.17)

One gets the equivalent expression

Ỹ (λ) = 1− Nz
NxNy

1
λ

[
Nu
Q−

∑
a∈A−A0

∣∣〈(Bu)†|V (λa)〉
∣∣2

λa

]

+
Nz

NxNy

∑
a∈Ã

∣∣∣〈(Bu − λaχu)† |V (λa)〉
∣∣∣2

λa(λa − λ)
· (A.18)

This last expression is nothing but the Laurent series ex-
pansion of Ỹ (λ). It shows that Ỹ (λ) is a rational function
with only simple poles. It is also an alternative way to
prove that it is a Stielges function, namely that imaginary
parts of Ỹ (λ) and λ have the same sign [8,7].

Appendix B: Pole at the origin

We will prove in this appendix that the vanishing eigen-
value has no influence on the residue value of the pole at
the origin. This means physically that it has no influence
on the unpowered sample’s behavior, and proves the as-
sertion in [7] that the resonances at λ = 0 and λ = 1 are
unphysical.

Let V be an eigenvector of −∆Q with vanishing eigen-
value. Let’s rewrite the eigenvalue equation (−∆Q)V = 0
as ∑

y∈L
A(0)
xy Vy = 0, ∀x ∈ L. (B.1)

We set B(0)
x = Bu

x +Bd
x the characteristic function of the

type “Q” electrode’s neighborhood. Note that A(0) is a
symmetric matrix. Moreover, A(0)

xx ≥ 0, A(0)
xy ≤ 0 for x 6= y

and
∑
y Axy = Bx ≥ 0 by positivity of (−∆Q).

We will prove that for all x of the lattice, B(0)
x Vx = 0

for any V such that ∆QV = 0 (i.e. such an eigenvector
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as a vanishing value on any site linked to an electrode by
a type Q impedance). Note that it has to be proven only
for sites x such that B(0)

x 6= 0, i.e. the sites linked to an
electrode by a Q-type impedance.

The proof uses a renormalization procedure (also cal-
led decimation). One can choose a x1 in the lattice such
that A(0)

x1x1 6= 0. Then by equation (B.1), one can compute
Vx1 as a function of Vx’s for all other sites x. Namely

Vx1 =
1

A
(0)
x1x1

∑
x 6∈{x1}

A(0)
x1xVx. (B.2)

One can then substitute the value of Vx1 in equation (B.1)
and thus eliminate the site x1 in the computation. This
leads to a renormalized equation∑

y 6∈{x1}
A(1)
xy Vy = 0, ∀x 6∈ {x1}, (B.3)

where 
A

(1)
xy = A

(0)
xy −

A
(0)
xx1A

(0)
x1y

A
(0)
x1x1

,

B
(1)
x = B

(0)
x −

A
(0)
xx1B

(0)
x1

A
(0)
x1x1

·
(B.4)

This first step can obviously be iterated. Decimation of
the sites x1 . . . xk+1 leads to the following renormalized
operator 

A
(k+1)
xy = A

(k)
xy −

A
(k)
xxk+1A

(k)
xk+1y

A
(k)
xk+1xk+1

,

B
(k+1)
x = B

(k)
x − A

(k)
xxk+1B

(k)
xk+1

A
(k)
xk+1xk+1

,

(B.5)

and to the renormalized eigenvalue equation∑
y 6∈{x1,...xk+1}

A(k+1)
xy Vy = 0, ∀x 6∈ {x1 . . . xk+1}. (B.6)

We now describe the behavior of the matrix elements un-
der decimation. First, we consider the values near the elec-
trodes. One can easily show that

B(k)
x =

∑
y 6∈{x1...xk+1}

A(k)
xy . (B.7)

Another remarkable fact is that the renormalized laplacian
operator −∆(k)

Q has the same positivity properties as the
original one. Namely

A
(k)
xx ≥ 0 ,

A
(k)
xy ≤ 0, ∀x 6= y

B
(k)
x ≥ 0.

(B.8)

The proof goes by recursion. The property is true for k =
0. Assume it is true for a given k, then for x and y different
from any xj , j = 1 . . . k + 1,

A
(k+1)
xy = A

(k)
xy −

A
(k)
xxk+1A

(k)
xk+1y

A
(k)
xk+1xk+1

≤ A(k)
xy ≤ 0 ,

B
(k+1)
x = B

(k)
x − A

(k)
xxk+1B

(k)
xk+1

A
(k)
xk+1xk+1

≥ B(k)
x ≥ 0 ,

A
(k+1)
xx = −

∑
y 6∈{x1,...,xk+1}

and y 6=x

A(k+1)
xy +B(k+1)

x

≥ B
(k+1)
x ≥ 0.

(B.9)

Equation (B.9) will be useful for it tells that for any
non-renormalized site x, if B(0)

x 6= 0 then B
(k)
x 6= 0 for

any k.
We can now prove that Vx = 0 for any site x such that

B
(0)
x 6= 0, and any V such that −∆QV = 0. Indeed, one

simply decimates x1 . . . xK , all sites of type Q except x.
Note that for all Xk’s A(0)xkxk does not vanish for it is
greater or equal to the number of sites linked to xk by a
type Q impedance. The last (Kth) decimation step leads
to

A(K)
xx Vx = 0 . (B.10)

By equation (B.9), A(K)
xx ≥ B

(K)
x ≥ B

(0)
x > 0, and thus

Vx = 0.
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